Adv. Appl. Prob. 34, 179-204 (2002)
Printed in Northern Ireland
© Applied Probability Trust 2002

EXTREMAL BEHAVIOR OF HEAVY-TAILED ON-PERIODS
IN A SUPERPOSITION OF ON/OFF PROCESSES

ALWIN STEGEMAN,* University of Groningen

Abstract

Empirical studies of data traffic in high-speed networks suggest that network traffic
exhibits self-similarity and long-range dependence. Cumulative network traffic has been
modeled using the so-called ON/OFF model. It was shown that cumulative network
traffic can be approximated by either fractional Brownian motion or stable Lévy motion,
depending on how many sources are active in the model. In this paper we consider
exceedances of a high threshold by the sequence of lengths of ON-periods. If the
cumulative network traffic converges to stable Lévy motion, the number of exceedances
converges to a Poisson limit. The same holds in the fractional Brownian motion case,
provided a very high threshold is used. Finally, we show that the number of exceedances
obeys the central limit theorem.
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1. Introduction

Recent measurements of high-speed network traffic have shown three characteristic proper-
ties: heavy tails, self-similarity and long-range dependence (LRD). This implies that traditional
traffic models, based on classical queueing theory with exponential interarrival times, are not
appropriate for describing high-speed network traffic (see for example [5] and [12]). Empirical
evidence of the presence of self-similarity and LRD in traffic measurements can be found
in [1], [2], [10] and [18]. A common explanation for the observed self-similarity and LRD of
network traffic is heavy-tailed transmission times. In [1] and [2] evidence is found of heavy
tails in file lengths, causing heavy-tailed transmission times.

In this paper we will use the framework of the celebrated ON/OFF model, introduced by
Willinger et al. [18]. It is used to give a ‘physical explanation’ for the observed self-similarity
and LRD, using the assumption of heavy-tailed transmission lengths. In the ON/OFF model,
traffic is generated by M independent ON/OFF sources such as workstations in a big computer
lab or hosts in the Internet. An ON/OFF source transmits data at unit rate onto the network if it
is ON and remains silent if it is OFF. Every ON/OFF source generates an individual ON/OFF
process consisting of independent alternating ON- and OFF-periods. The lengths of the ON-
periods are identically distributed and so are the lengths of OFF-periods. For a single ON/OFF
source, we introduce the following notation. Let (X;);>1 and (Y;);>; be independent i.i.d.
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180 A. STEGEMAN

sequences of nonnegative random variables, having continuous distribution functions Fy, and
Fofr, respectively. The random variables X; and Y; are the lengths of ON- and OFF-periods,
respectively. We assume that, as x — oo,

Fon(x) =1~ Fon(x) =x™“L(x) and Foir(x) = 1 — For(¥) = 0(Fn(x)),  (1.1)
where @ > 1 and L is slowly varying at infinity. Hence, Fy, is regularly varying and Fog has
a lighter tail than Fi,. Denote

EX = pon, EY = pofr, and p = pon + Hoft-
Let
n
(Snr n 2 0) = (D,D+}:(X,~ +Y), n2 1) (1.2)
i=1
be a stationary renewal sequence, where the non-negative delay random variable D is indepen-
dent of the X- and Y-sequences and has distribution given by

1 (o]
P(D>x)=—/ P(X+Y > s)ds.
M Jx

Define the renewal counting process

[o¢]
&= loaS), >0, (1.3)
=0

and set u; = E&;. We denote the ON/OFF process generated by the source by W;, where

W, = 1 if ¢ is in an ON-period,
"7 lo iftisin an OFF-period.

Heath ez al. [7] give an explicit construction of D in terms of ON- and OFF-periods. Using this
construction, W; is also defined for 0 < ¢ < D. Heath et al. [7] show that the ON/OFF process
W is strictly stationary with mean E W; = pon/u. The main result of [7] yields an asymptotic
relation for the autocovariance function y (k) of Wif 1 < @ < 2: ask — oo,

y(k) ~const. k=@ D k=0,1,2,.... (1.4)

Hence, if 1 < a < 2, the autocorrelations are not absolutely summable. In this sense, the
ON/OFF process W exhibits LRD.
Next, consider a network of M i.i.d. ON/OFF sources. We adapt the notation introduced so

far to the mth source by adding a superscript (m), e.g. W,('") is the ON/OFF process generated
by source m. The total traffic in the network at time ¢ is defined by

M
Wu@ =Y W™, t>0
m=1
We call Wy, the workload process. Notice that, since we assume unit rate transmissions, Wy ()
equals the number of active sources at time ¢. Since the sources are i.i.d., (1.4) yields that the
workload process exhibits LRD. The total traffic until time # is then given by

t M
Wi () = / (Z w;'")) du, t>0.
0 m=1

We call Wy, the cumulative workload process.
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For large T, we think of (Wl’fl(Tt), t > 0) as the process on large time scales. Self-similar
approximations of W (T -), for large M and T, have been studied in [11], [17] and [18]. Recall
that a self-similar process is invariant in distribution under rescaling both in time and space
(see [16, Section 7.1]). In [17] and [18], sequential limits in M and T are taken. Depending on
the order of the limits, either fractional Brownian motion or stable Lévy motion is obtained as
an approximation. In [11], the case M = M7 is studied, where M7 has an infinite limit in 7.
Here, it depends on the growth rate of Mt whether fractional Brownian motion or stable Lévy
motion is obtained as the limiting process.

Recall that fractional Brownian motion B (-) is a mean-zero Gaussian process, which is
self-similar with parameter H € (0, 1) and has LRD in its increment sequence for H € (%, 1).
Stable Lévy motion A4(-) is self-similar with parameter 1/« and has independent increments;
A4 (2) has an a-stable distribution, where o € (0, 2]. For @ < 2, A, (¢) has infinite variance.
For more properties of fractional Brownian motion and stable Lévy motion, we refer the reader
to the monograph [16].

Let M = M7 be a nondecreasing integer-valued function such that

My —> o0 asT — oo.
Denote the quantile function of Fop, by
b(x) = (1) Fon(x) <, x> 0. (1.5)
For a nondecreasing function U, we write U *~ for the left-continuous inverse of U, i.e.
U< (y) =inf{s : U(s) = y}.

Notice that b(x) = x!/*L(x), for an appropriate slowly varying function L. We introduce the
following conditions on M, using the function b defined in (1.5).

Slow growth condition.

. b(MT) . -
lim =0 <= lim MTF,(T)=0.
T—o0 T—o00
Fast growth condition.
. b(MT) . -
lim =00 <= lim MTFy,(T)=cc.
T-oo T T—oo

The equivalence of the above conditions was shown in [11, Lemma 1].
Define the centered and normalized cumulative workload

Wi, (Tt) —E W3y (T1)

Vr() = dr )

where dr is strictly increasing in 7. The main result of [11] is the following.
Theorem 1.1. Let 1 < « < 2, By (t) be fractional Brownian motion with H = %(3 —a) and
Aq(t) be a totally skewed to the right «-stable Lévy motion. Set

__Hoft ( -« )'1/“ 2 2uTQ2—a)
w172\ T2 = &) cos(ra/2) ’ (- Dur@d—a)

(2]
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and

(b(M1T),opAy) if Mt satisfies the slow growth condition,

(dT» V) = 3—q 172 . . ..
({T°~*L(TY)M71]'/“,0By) if Mt satisfies the fast growth condition.

Then, .
Ve) M V) asT - oo, (1.6)

fidi . . . C g
where —> stands for convergence of the finite-dimensional distributions.

In the case of fractional Brownian motion as limit process, the convergence in (1.6) can be
strengthened to a functional central limit theorem. We also mention that, for o > 2, Vr satisfies
the functional central limit theorem with Brownian motion as limit.

The theorem above shows that the growth rate of M is responsible for whether the limiting
process is fractional Brownian motion or stable Lévy motion. Since @ < 2, we have H €
(%, 1). In this case, fractional Brownian motion exhibits self-similarity and the corresponding
increment sequence enjoys LRD, thus giving one possible explanation of the empirically
observed phenomena in teletraffic. Stable Lévy motion is also self-similar, but has independent
increments. In contrast to the fractional Brownian motion case, LRD is lost in the limit. Also,
fractional Brownian motion is a Gaussian process, while the marginal distributions of stable
Lévy motion have heavy tails.

The difference in the dependence structures of the limiting processes can be explained as
follows. The cumulative workload W, (T't) can be decomposed as

(m)
M M
Wi (T =" B 1, sy (T1) + }: Zx‘”’) > RE1 5 o TD. A
m=1 m=1 i=1 m=1

where By, and R, are the contributions of the zeroth renewal interval and the interval [Tz, Sg;,),
respectively. The latter term needs to be subtracted, since the contribution of [Sg;,—1, Sgr,) is
contained in the second term.

If M satisfies the slow growth condition, the first and third term in (1.7) vanish in the
limit. After centering and normalizing, the second term in (1.7) consists of an asymptotically
negligible part (called A22 + A23 in Section 5.4 of [11]) and the random sum

M S(m) (rn)

1 x(m) _ Hon y(m) (m) Moff (m) Hon y, (m)
b(MT)ZZ[ T KT )] ,,(MT)ZZ[ i ]

=1 i=l =1 i=1

Next, in each of the random sums, the renewal counting process S}';') is replaced by its mean
u:. This is possible because we can use an Anscombe-type condition, which is satisfied by
virtue of the slow growth condition. Notice that, since the renewal process (S,) is stationary,
we have u7; = Tt/u. In this way, the centered and normalized cumulative workload behaves
asymptotically like a sum of M[T't/u] mean-zero random variables with a heavy right tail.
The normalization b(MT) = (MT)!/ "‘L(M T) is precisely the one needed for convergence to
a totally skewed to the right a-stable distribution. The possibility of replacing Sn by wr; also
explains why the limiting process has independent increments.

If M satisfies the fast growth condition, all three terms in (1.7) contribute to the limit. Also,
it is not possible to replace STt by ur:. The normalization [T3-L(T)M]Y? is asymptotic
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to the standard deviation of Wj,(T). In this way, the LRD present in the workload process
remains intact as T is large and a Gaussian limit is obtained.

In this paper, we will use the framework of the ON/OFF model to study the number of
exceedances by the sequence of ON-periods (X §m)). As in [11], we study the case M = M7
and distinguish between fast and slow growth of M. We use a threshold x7 which has an infinite
limit in 7. The number of exceedances is counted up to time 7', which means that we only
consider the completed ON-periods

X§"‘),...,X('<",,.)) and min{ 7 — S('(',',,)) ,X('("”?)), form=1,...,M.
&r -1 & -1 &

The total number of exceedances up to time T is given by

M [Em-1

Ar = Z Z llxr.oo)(Xi(m))‘*'l[xr,oo)(mj“( S('(',',,)) e X;'('rln))))

m=1 i=1

We are interested in the limit dlstnbutlon of Ar as T — oo. Itis clear that the ON -periods

X l( ™) and the counting process ’g’T are heavily dependent. From the definition of ’g’T in (1.3)

it follows that

x™ o x% min( T - ST ,X('{,‘,?))ST, m=1,....M.
gm-1 &g -1 &

This implies that the threshold x7 must be less than T to obtain a nondegenerate limit for A7.
If M satisfies the slow growth condition, we obtain a Poisson limit for A7, for certain
thresholds x7. The intuition behind the proof is as follows. Define

M -1

(rn)
A=3"3 I X™) and AP ZZl[x,oo>(X('"’) (1.8)
=1 i=1

m=1 i=1

Observe that, for all w,
AR < Ar < AP, (1.9)

As in the proof of Theorem 1.1, with Lévy motion in the limit, it is possible to replace all 5}"’)

by pr. For large T, the distributions of Al;’ and A‘}p are approximately binomial with M[T'/u]
trials and success probability Fy,(x7). The Poisson approximation to the binomial distribution

then guarantees that AI;’UP converges in distribution to Poi(1/x) (and by (1.9) also that A7
converges in distribution to Poi(1/u)) if

T - 1
EAS™ ~ M ;Fon(xT) s T - .

This implies that x7 ~ b(MT). Moreover, since the slow growth condition is satisfied,
x7 = o(T).

Forl < a < 2, there is a clear connection with Theorem 1.1. Let x,, be such that n Fop (x,,) ~
1, that is, x, ~ b(n). Since Fyy, is regularly varying with tail parameter «, as n — oo,

n
xS (Xi = o) = S (1.10)
i=1
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where S, is a totally skewed to the right a-stable distribution. Also, as n — o0,
x7 max(Xy, ..., X,) > Do, (1.11)

where P(®, < y) = exp{—y ™} is the Fréchet distribution. Finally, due to the Poisson limit
theorem, the definition of x,, guarantees that, as n — oo,

n
> 1s,.00 (Xi) = Poi(1). (1.12)
i=1

For @ > 2, (1.11) and (1.12) still hold, but (1.10) translates into the central limit theorem where
the normalization is (n var(X))!/2 (if @ = 2 and E X? = oo a different normalization has to be
used).

If M satisfies the fast growth condition the situation is more comphcated In order to apply
the Poisson limit theorem, we must have E A7 ~ const. Since ‘ET ™) cannot be res)laced by ur,
there is no straightforward method of calculating E A7. However, notice that ST is a stopping
time with respect to the filtration

FiP =@M, X" 7", X ), ozl

Therefore, we also include the ON-periods X ('("m)), which allows us to use Wald’s identity for

the expectation of random sums (see [15, Sectlon 1.8.1] or [6, Theorem 5.3 in Chapter 1]). We
consider the following number of exceedances:

M
=y Z 1pep, 1) (X™).

m=1 i=

‘We need the restriction X i("') < T toobtain a nondegenerate limit for Ar. Using Wald’s identity,
we have

~ T - _
EAr = M;[Fon(xT) — Fou(T)]

—MTFon( )[Fon(xT) 1].

P D) (1.13)

Since the fast growth condition holds, M T Fon(T) — 00. To have E ZT ~ const., we must
choose x7 such that Fyn(x1) ~ Fon(T). Using the monotonicity of Fyn and a property of
regularly varying functions (see Proposition B.1), we see that xr ~ T must hold. Moreover,
sincexy < T, wecan write xr = T —ar, where ar is a positive sequence satisfyingar = o(T).
We obtain a Poisson limit for AT by balancing M and a7 such that E AT ~ const.

It appears that, if M satisfies the fast growth condition, the space where exceedances can
occur must be chosen very small in order to obtain a nondegenerate limit. Since the ON-periods
cannot be larger than 7', there will be more and more of them near T as M increases. The faster
M grows, the smaller the region [T — ar, T) has to be to ensure a nondegenerate limiting
number of exceedances. A large M must be compensated by a small ar. Thus, for M very
fast, Poisson convergence of At is due to the number of ON-periods with lengths which are
practically indistinguishable from T'.
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This paper is organized as follows. In Section 2, we consider the case when M satisfies
the slow growth condition. We use the theory of point processes to show that the number of
exceedances of the threshold x7 ~ b(MT) = o(T) converges to a Poisson random measure.
We apply this result to show that the number of exceedances up to time 7't converges weakly
to a homogeneous Poisson process in (D[0, oo), J1) as T — oo.

In Section 3, we consider the case when M satisfies the fast growth condition, using point
processes as in Section 2. We obtain convergence to a Poisson random measure for a threshold
xr = T — ar with ar = o(T') under a balancing condition on M and ar.

In Section 4, we show that

M &Y

Z Z I[XT,T](XEm))

m=1 i=1

obeys the central limit theorem under the condition that M T[Fon(xr) — Fon(T)] = oo. This
ensures an increasing number of exceedances. Here, M does not have to satisfy a particular
growth condition.

2. Slow growth of M

Here we consider the case where M is either fixed or M = M1 — o0 is a nondecreasing
integer-valued function satisfying the slow growth condition
. b(MT)
lim

T—o00

=0 <= lim MTFo(T)=0
T—>oo

We derive the limit distribution of

M g(rn)

4=t O+ 1o (min(7 -5 |

m=1 i=1

which is the total number of exceedances, up to time T, by completed and running ON-periods
of all M sources. The threshold x7 is such that, as T — oo,

MT Fop(x7) ~ 1. .1

Notice that xy ~ b(MT), where b is defined in (1.5). Since the slow growth condition holds,
we have x7 = o(T).

In Section 2.1, we use the theory of point processes and obtain convergence to a Poisson
random measure. The convergence is illustrated by means of simulations. Section 2.2 considers
the number of exceedances up to time Tt and shows weak convergence to the homogeneous
Poisson process.

2.1. Convergence to a Poisson random measure

In this section, we use the theory of pomt processes to derive the limit distribution of the
number of exceedances of the sequences (X ) Recall the definition of the stationary renewal
sequence (Sn ) from (1.2). For T > 0 we define

M o M
N10=Z Zss}’")/T,x,?'”’/xT and Ny’ Z

m=1 i=1

(m)/T X(m)/x (22)

nMg
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which are point processes on the state space E := [0, 00) x (0, 00]. For (u,v) € E and
C x D C E, the Dirac measure ¢ is defined by

1 if(u,v) e C xD,

u,v C D) =
Fun(Cx D) {0 if (u, v) ¢ C x D.

For fixed T, the point process N}" resembles the point process of exceedances (see [4, Exam-
ple 5.1.3]). The difference is that NIT0 also takes into account the ‘real’ times, in the form of the
renewal sequences (S,Em)), at which the exceedances occur. An additional complication is that
the X™ and S{™ are heavily dependent. Let A2 and A}? be defined by (1.8). Notice that

M &1

NP0, D) x [1,00) = 37 37 lsroy(X;™) = AR,
m=1 i=1
M &

NP0 1) x [1,00) = 37 3 liar.oo) (X;™) = AT

m=1 i=1

Let M,(E) denote the space of all point measures defined on E, equipped with the vague
topology (see [14, Section 3.4]). Our goal is to show that both N1T° and N;p converge in
distribution to a Poisson random measure (PRM) in M, (E). Recall that for a PRM N on E
with mean measure v, N(A) has a Poisson distribution with intensity v(A) for any Borel set
A C E,and N(A}) and N(A3) are independent if A; and A3 are disjoint.

Let L denote Lebesgue measure. Our main result is the following.

Theorem 2.1. Suppose that M satisfies the slow growth condition and xt satisfies (2.1). Then,
as T — oo,
NP3 N and NP3 N inMy(E),

where N is PRM with mean measure 'L x v and, for 0 < a < b,
b
v[a,b) = / ar~ @t gy,
a

Notice that, since =} (L. x v)([0, 1) x[1, 00)) = u~1, Theorem 2.1 implies that, as T — 0o,
AR 2 Poi(u™!) and AP > Poi(u7h).
By (1.9), A7 = Poi(u™!) also.

Proof of Theorem 2.1. We start with proving convergence of N}". We use [9] (see Theo-
rem A.1 below) and consider the class 4 of sets

k
A= Jlaj, b)) x (c;j, dj],
j=1

fork > 1,(aj, bj)x(cj,dj]1 C E, j =1,..., k. Wemay assume thatthe sets [a}, b;) X (c}, d;]
are mutually disjoint. We first show that

P(NI°(A) = 0) - P(N(A) =0).
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Notice that
5("')
k M Tb
NT(4) =Z Z Z l(cfxrvdjxrl(ngm))‘
= m=1 E(m)

Let e — 0 satisfy (C.1) below. Define the event
BT = {IS]("T) _,u'Ttl SET/'LTht =ajybj,j = 11'-'9k1m = 1»--‘yM}~
From Lemma C.1 it follows that P(B7) — 0. Define

M L(Zerurs; =1

k
N};’%(A)=Z Z Yo e X™),
j=

m=1 i= l(1¥ér)ura J
where | -] denotes the integer part function. We have the inequalities
P(NP(4) = 0, By) < P(N™.(4) = 0),
Ky
and
P(N°(4) = 0, Br) > P(N‘ (A) =0, BT) > P(N1 (A) = ) P(BS).

‘We will show that
P(NL"}L (A) = o) — P(N(A) =0).

The proof for u7 is analogous. First, we assume that the sets [aj, b;) are mutually disjoint.
This assumption is relaxed later on. Moreover, assume that

O<ai<bi<apy<by<---<ap <b <oo.

Then, for large T, |_(1+ET),uTij -1< (1 —eT),uTajHJ,forj =1,...,k—1. Using (2.1),
we have

P(Nl‘f+ (A) = 0)
k

= [TtPXi/xr ¢ (cj.dj), i = L1 = epdiazay s - L+ erdpare, ] — DI
j=1

=~

[1- Fon(C]xT) + Fon(d xT)]MT(bJ_“J)M !

o d® ]M Tkj-apu

~I1

j=1

k c
~ - J 4L J
JEII[I MT+MT
k
~l_[1_(b

j=1

[ j—ap)c;® —dj_a)]MT
uMT
k
~ exp[—/f1 Z(bj —aj)(c;* - dj_a)]

j=1
=P(N(A) = 0).
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The final step consists of dropping the assumption that the [a;, b;) are mutually disjoint.
We only consider the case k = 2. The general case is completely analogous. Let

2
A=|Jlaj, b)) x (cj. djl,
j=1

where a; < a < by < by and, for example, ¢; < di < ¢ < dz. Then
lo _
P<Nu¥(A) - O)
= [Pi/xr ¢ (1, di). i = L = enura ). -, L0 = enura] = 1,
Xi/xT & (c1,di1]1U (c2, d2], i = (1 — € u1ay]s - -» LA+ €m)itre | — 1,

M
Xi/xr € (a.dal, i = L +enur), o LU+ eDuri] = D]

~ [(1 - Fon(cle) + IE‘on(dle))T(az_alm_1
- - = - _ -1
(1 = Fon(c1x7) + Fon(dix7))(1 — Fon(caxr) + Fon(daxr))T 170%

L = 1M
: (1 - Fon(C2XT) + Fon(d2xT))T(b2_bl)M 1]
: 2 -1
= l_[[l — Fon(ijT) + Fon(dij)]MT(bj_aj)Il« ,
j=1

which converges to P(N (A) = 0) as before.
It remains to show that, for I = [a, b) x (¢, d] C E, we have

limsupP(NlTo(I) > 1) <P(NU) > 1).

T—o0

Since I € s, by the first part of the proof,
lim sup P(N2°(I) > 1) < 1 — liminf P(NX*(/) = 0) — liminf P(NP(1) = 1)
T—o0 T—oo

T—>o0

=1-P(N(I)=0) —liTmian(N¥’(I) =1).

Thus it suffices to show that
liminf P(NI(I) = 1) > P(N(I) = 1).
T—o0

As before, let e — 0 satisfy (C.1) and define
Br = {t"™ — uri| < erure, t=a,bm=1,..., M}.

Write (slightly abusing notation)
M |(1—er)ursl—1

1 (m)
Ne =3 3 leran®™),
m=1 i=|(14+er)iu1al
M |(+er)uta)—1

Ne=Y Y leranX™)

m=1 i=[(1—€r)ural
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and
M |(l+er)uTpl—1

N=3 Y leran&™.

m=1 i=[(1—€r)ursl

Since NL"_ (), N gT and NfT are mutually independent, we have
T
P(N(I) = 1) > P(NP(I) = 1, Br)
1 _ _ b __
> P(NI2.(1) =1, N, =0, N}, =0, Br)
> P(Nllf;(l) =1, N =0, N’ =0) - P(Bf)
= P(N}f; () = 1)P(N§T = O)P(N?. =0) — P(B).
By Lemma C.1, P(B}) — 0. Using (2.1), we observe that as T — 00
P(Ng, = 0) = [1 ~ Fon(cxr) + Fon(dxp))"@ertire=h
[ - g-eMQerTap™'-1)

MT+MT

2a(c™® — d~)TMT
~l-= - 1.
[ uMT ]

Analogously, P(NfT =0) — 1. Set
rr =M (1 —er)urs] —2 — (1 +er)piral).
Finally, by (2.1) and the first part of the proof,
P(N(D) = 1) = rrlFon(cxr) = Fon(@xn)]1 = Fon(exp) + Fon(dxr) ™!
N MTMh —a)(c*—d™%)

,u UT P(N(I) =0)
- &= ")(C: —) explu b — ) = d )
=P(N(I) = 1).

This completes the proof for N %’ Since the proof is based upon the fact that the counting process
&r canbereplaced by its mean w7, the same techniques can be used to show convergence of N, ;p.

Remark 2.1. To prove convergence of N;p we can also apply Theorem 4.7 of [8] (see also
[14, Proposition 3.22]). This involves showing that EN;p(A) — EN(A), which follows
from Wald’s identity and (2.1). An alternative way to prove Theorem 2.1 is by starting with
convergence of either N1T° or N. ;p and then showing that the distance between N #’ and N ;p in
the vague topology on M, (E) (see [14, Section 3.4]) becomes arbitrarily small as T — oc.
By virtue of Theorem 4.2 of [8], this means showing that for each continuous function f :
E — R with compact support, we have

P(INP(f) = N ()l > €) = 0,
for every € > 0.

In Figure 1 the exceedances of simulated series of ON-periods are depicted for M7 = log(T).
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FIGURE 1: Illustration of the exceedances of simulated series of ON-periods in the slow growth situation.

Both Fy, and Fsr are Pareto with tail parameters o = 1.2 and 1.8 and means pon = 3 and pofsr = 95,

respectively. Here M7 = log(7T") and xr is chosen such that MT Fon(x7)/1e ~ 10. It is clear from the

plots that the number of exceedances stabilizes as T becomes large. Moreover, the exceedances do not
appear in clusters, which is what might be expected in the case of a Poisson limit.

2.2. Convergence to a homogeneous Poisson process

In this section, we will use the convergence of N?’ and N;p to a PRM to show that, as
T — oo, the number of exceedances up to time Tt by the double array X converges toa
homogeneous Poisson process. Again we assume that there are M i.i.d. sources, where M is
either fixed or increasing as T — oo. In the latter case we also suppose that M satisfies the
slow growth condition. The total number of exceedances up to time 7't is given by

M [&7-1

Ary=>_| > 1[xT,oo)(Xi(m))+1[x1,oo)(min( S('&)) v X;’{',,?)))

m=1 i=1

We assume that the threshold x7 satisfies (2.1). Notice that the processes A7 contain more
information on the times when exceedances occur, while N. %’ and N ;p hold more information
on their sizes.

Let D[0, co) denote the space of functions on [0, co) which are right-continuous and have
left limits. We assume that D[0, co) is equipped with the J;-topology (see [13, Chapter VI]).
We have the following result.

Proposition 2.1. Let (Z(t), t > 0) be a homogeneous Poisson process with intensity w L
If M satisfies the slow growth condition and xt satisfies (2.1), then as T — oo
(A7 (1), t 2 0)>(Z(1), t > 0),

where - denotes weak convergence in (D[0, 00), J1).
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Proof. From Theorem 2.1 it follows that the families of point processes N#’(- x [1, 00))
and N;p(- x [1, 00)) converge weakly in M, ([0, 00)) to N(- x [1, 00)). Define forz > 0

(m)

(m)
M 57‘, -1 M ETx
ARO =Y Y Ipre&™) and AFO =D Y lxeX ™).

Since
ARt = NP([0,1) x [1,00)) and AF (@) = N7 ([0, 1) x [1, 00)),

Alf and Al}p are the corresponding families of cumulative processes. Notice that, for all # > 0
and all w,
AR() < Ar(1) < AT ().

The result now follows from these bounds, Lemma 9.1.X of [3], and the fact that N ([0, z) x
[1, o0)) is a homogeneous Poisson process with intensity u~!.
3. Fast growth of M

In this section, we derive the limit distribution of the number of exceedances if M satisfies
the fast growth condition

b(MT -
lim (MT) =00 <<= lim MTF.,(T) =00,
T T T—00

where the quantile function b is defined in (1.5). Recall from Section 1 that we consider the
following number of exceedances:

£

M
Ar = Z Z r—ar. 1y (X{™),

m=1 i=1

where ar is a positive sequence satisfying ar = o(T). We have
~ T - Fon(T —
EAr = M—Fon(T)[M - 1].

1 Fon(T)

For any M satisfying the fast growth condition we choose ar such that E XL ~ const.
Proposition B.1 gives that Fon(T —ar)/ Fon(T) = 14+0(1), butin order to have E A7 ~ const.
we need to know the rate at which the o(1) term converges to 0. This requires us to impose a
second order regular variation condition on Fon. In practice, however, such a condition often
cannot be verified. Therefore, and since we are only interested in a qualitative characterization
concerning the limit of A7, we will assume from now on that for some x( and some constant
c >0,

Fon(x) = cx™% forx > xo. 3.1

As before, « > 1 and Foff(x) = o(ﬁon(x)). Then, for T large enough,

EAr = M%Fon(T)[(l - T)_a - 1].
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Using a first order Taylor expansion, we obtain

~ T - ar ar
EAr = M;Fon(T)[a—f +o(—7—7)]

o - —
= ;MaTFon(T) + o(Marg Fou (T)).

Therefore, we choose ar such that

ar =o(T) and Mar Foy(T) ~ 1. 3.2)
In this way,
lim EAr = 2.
T—o0 17

We will derive the limit distribution of XT as T — oo. In Section 3.1, we will use weak
convergence of point processes to a PRM to show that A T = Poi(a u~1). This convergence is
illustrated by means of simulations. In Section 3.2, we consider convergence to a homogeneous
Poisson process.

3.1. Convergence to a Poisson random measure
Define the point processes

M
ﬁT — Z ﬁ;m)’
m=1
where
o0
x(m) _
Ny = Zssﬁ}/r,(r—x}"“)/ar‘
i=1
Let E := [0, 00) x (0, 1] be the state space of ﬁr. Notice that
M &

Nr@0. ) x 01D =Y > Ir—ar.n(X{™) = Ar.

m=1 i=1

(m)
T

In the following theorem we show that ﬁT weakly converges to a PRM.

Theorem 3.1. Assume that Fy, satisfies (3.1). If M satisfies the fast growth condition and at
satisfies (3.2), thenas T — oo

Nr > N in My(E),
where N is PRM with mean measure ap” L x L.
Since =1L x L)([0, 1) x (0, 1]) = a1, Theorem 3.1 implies that, as T — oo,

M &
Ar=> )" 17 —ar. 1y(X™) 2 Poi(au).

m=1 i=1

The proof of Theorem 3.1 is presented below. We need the following lemma.
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Lemma 3.1. Assume that Fyy, satisfies (3.1). Suppose that M satisfies the fast growth condition

and ar satisfies (3.2). Let 0 < a < b < 1 and define
B; ={(T — Xi)/ar € (a,bl}, =1
As T — oo,

§r i—1
ME(Z Zlgin31> - 0.

i=2 I=1
Proof. Using a first order Taylor expansion, we have for T large enough
P(B1) = Fon(T — bar) — Fon(T — aar)

D) (Fon(T —bar)  Fon(T — aar))
- Fon(T) Fon(T)

- A (10 - (1-0%) )

= Fm,(T)(a(b - a)ﬁ;Z + o(a-TT—))

Hence, by (3.1) and (3.2),
MT P(B;) ~ a(b — a)Mary Fon (T) ~ a(b — a).

We have
&r i-1

§r 2 34
22 ZlBiﬂBl = (Z 1B,~) —Z 1p,
i=1 i=1

i=2 =1

§r 2 34 §r
= (Z(la,. - P(Bn)) +2P(B)ér Y _ 1 — [P(B)I%F — Y _ 15,

i=1 i=1

=: It +2llt — It —1Vr.

From [6, Theorem 5.1 in Chapter II], we have that for r > 0

r
E$§~E as T — oo.

Using this fact and (3.3), we obtain
MEIIT ~ const. M~ 0.

Theorem 5.3 of [6, Chapter I], gives

§r 2
E(Z(lBi —P(Bl))) = var(1,) E4r.

i=1
Using this, we find that
M@EIT —EIVy) = Mvar(1g,)Eér — MP(B1)Eér
= M(P(B) — [P(B)1)) Eér — MP(B))Eér
= —M[P(B)]*Eér,

3.3)

i=1

34)

(3.5)



194 A. STEGEMAN

which is o(1) by (3.3) and (3.4). For IIT we have

ér
MEIl; = MP(BnE(sT > (s, - P(Bl))) + MIP(B)IPEE2.

i=1
The second term on the right-hand side is o(1) by (3.3) and (3.4). Using the Cauchy—Schwarz
inequality and (3.5), we obtain for the first term the upper bound
MP(B)EEH'*(®B)I1 - P(BDIEEN /2,
which is o(1) by (3.3) and (3.4). This completes the proof.
Proof of Theorem 3.1. We consider sets of the form

k
A= U[rj, sj) x (aj, bjl,
j=1
fork > 1,[rj,sj)x(aj, bj] C E,L: 1, ..., k. Wemay assume that the sets [r;, 5;) x (aj, b;]
are mutually disjoint. Notice that N7 are the row sums of a triangular array of point processes.
According to Theorem A.2 below, it suffices to show that

MP(N{P(A) = 1) > EN(A) and MP(NP(4) >2) — 0.

Since

ENr(4) =) MP(N;'(4) = n),
n=1

it also suffices to show that

ENr(A) - EN(A) and MP(N®(4) > 1) > EN(A).
Define

Bij = {(T — X;)/ar € (aj, bjl}, i1, j=1,...,k

Notice that
S (m)

M TSj

N =Y > Ur-sar.r-ajanX™).

m=l il 41

Using the fact that &7 is a stopping time, Wald’s identity and (3.3), we obtain

k
ENr(A)=p='Y (sj —r)MT P(By;)
j=1
k —~
~ap™'y (sj —r)bj —aj) =EN(A).
j=1

It remains to show that M P(IV}I) (A)>1)—E N (A). By Markov’s inequality we have

lim sup M P(NS"(A) > 1) < EN(A).

T—o0
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For nonnegative vectors n, = @, .. n®yandn, = (P, ..., nP), let
Aﬁi = {STrj = nrj), ETS] = ngj), j=1,...k}.

) ()

Notice that for n, < ng; (which means that n(J < ng

partition of £2. We write

for j =1,...,k), the Ay’ ° constitute a

€7 érs;
P(N{(A) 2 1) =P (Z > 13,,_) (U U B,,)
Jj=1 ’—gTr +1 J= 1’—gTr +1

k (J)

= ZP(U U (B,,nA"))

ny=<ns J=1 (J)+1

For fixed n, and ng, we apply the inclusion—exclusion formula on the two unions as a whole,
which yields the lower bound

W C
YO PBNAD- 3 Y X PByNBuNAR)
J=1j=nP 1 J=2 =1 i@ 41 1=n 41

n

k i-1
—Z Z Z P(B,'j ﬂB[jnAZ':).
I=li=n 42 1=n+1
Using P(B) = E(1p) and the linearity of the expectation, this equals

) i1 ) n®

k ng' k J
ZE( Z lBijﬂAZ§)_Z E( Z Z lBijﬂBlnﬂAﬁf)

=1 e J=2n=1 N 04 =™
k (1)
ST T )
Jj=1 i (1)+2 1= n(’)+1

Since the A:j are a partition of €2, we have shown that

ET:j

k koj-1 b1, §Tsn
MP(N‘”(A)zl)zMZE( > 1Bij)—MZ ZE( > 13,.,.n3,,,)

j=1 i=grr; +1 Jj=2 n=1 i=gry;+1 I=frp, +1
k £1s;
wyE( YT iem)
j=1 i=frr+2 I=brr+1
=Ir -1t —-1lr.

Notice that It = E ﬁT(A), which converges to E N (A). It remains to show that I and Il 7
converge to 0. Since, for fixed j,

§Ts] §Tsj i—1

Z Z 13110311 - Z Z lB,'jﬂBlj,

i=rr;+2 I=brr;+1 i=2 I=1
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the convergence IIIT — 0 follows from Lemma 3.1. Next we deal with II7. Fix j and n.
We have n < j. Assume that the sets [r}, 5;) are ordered such that

n<j = r,=<rj.

Denote
ET: j ET Sn

D;"‘j‘n) = Z Z lB,'jﬂBl,,,

i=§Trj +1 I=érp,+1

and define the following disjoint partition of :

Cy (], n) = {ETs,, =< ETrj},
C2(j, n) = {§1s; = &1s, > E17}},
C3(j,n) = {STsn > STs,'}-

We will show that
§1s; -1 Ersy 1—1

) 3D MTRE) ) SIS 39

i=2 I=1 1=2 i=1
where
B = {(T — X;)/ar € (min(a;, a,), max(b;, by)]}, i>1

Then IIT — O follows from Lemma 3.1. It is not difficult to see that

Eij ET:,. ETSj i—1
(j,n) ~ o~ ~ ~
DY leigm < ) > 1505 =D Y 15 3.7)
i=§Trj+1 l=§Tr,|+1 i=2 I=1

Next consider C,(j, n). From the definition of &7 in (1.3) it follows that if C,(j, n) # &, then
sn > rj. The ordering of the sets [r;, s;) now implies that [r}, s;) and [ry, s,) are not disjoint.
Since [r;, s;) x (aj, b;] are mutually disjoint, it follows that (a;, b;]1 N (an, by] = @. Hence,
B;j N By, = @ if i = 1. The reasoning above implies that

€rs; &7 €7 &7 §1s; i1
G.n) ~ ~ ~ ~
D" leGm < Yo D loma< D D 15aE <2D. D l5ng-
i=Err,+1 I=E7,,+1 i=Erry+1 I=t7,,+1 i=2 I=1
Ii I
(3.8)
Since C3(j, n) # @ also implies that [}, s;) and [r,, s,) are not disjoint, we have analogously
. ETsn ETsn ETsn i—1
D eygm = Y. D lmgnmn <23 O 15nE- (3.9
i=E7ry+1 I=t7,,+1 i=2 I=1
15

The proof now follows by observing that (3.7)—(3.9) together imply (3.6).

In Figure 2 the exceedances of simulated series of ON-periods are depicted for M7 = T.
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FiGURE 2: Illustration of the exceedances of simulated series of ON-periods in the fast growth situation.
Both Fy, and Fofr are Pareto with tail parameters « = 1.2 and 1.8 and means pon = 3 and wof = 5,
respectively. Here My = T and x7 is chosen such that M T[Fon(xT) — Fon(T)1/; ~ 10. To make the
plots more clear, only the ON-period lengths thatlie in [x7, T'] are depicted. Asin the slow growth situation
the number of exceedances stabilizes and there are no clusters, which is consistent with a Poisson limit.

Remark 3.1. In Figure 2, almost all exceedances in the plots with 7 = 5000 and 7 = 10000
are due to the ON-periods X ((,,,)) This can be seen as follows. Letn e {l,...,&; ) _ 1}.

By definition, Sé;"ll < T and hence the maximum length of an ON-period X ,(,’") is T — S,(ﬁ)l.

For an ON-period X, {m) exceeding x7 we must have 7 — S,(lm)1 > x7, which is equivalent to

Sﬁm)l <T—-—xr. In the plots we normalized the time scale to the interval [0, 1]. Hence, for

any ON -period X (m) exceeding x7 and starting at a time later than (T — x7)/T, we have
i= ST For the plots with 7 = 5000 and T = 10000 we have (T — x7)/T = 0. 134 and
0.077, respectively. So for T = 10000 all 7 exceedances are due to the ON-periods X (m) For

T = 5000 this is true for at least 11 of the 13 exceedances. This raises the questlon as to
whether the same holds for AT, i.e.as T — 00, does

M
Z l[T a;r,T)(X (m)) "‘) POl(a,u 1)‘7

m=1
We were, however, not able to obtain a conclusive answer.

3.2. Convergence to a homogeneous Poisson process

The following result is analogous to Proposition 2.1. Since the proof is similar, it is omitted.
Define for ¢t € [0, 1]
Mg

Ary=>_ %" T —ar, 1y(X™).

m=1 i=1
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Proposition 3.1. Assume that Fyy satisfies (3.1). Let (Z(t), t > 0) be a homogeneous Poisson
process with intensity ey~ ). If M satisfies the fast growth condition and ar satisfies (3.2), then
asT — oo .

(Ar(0), 1 20) > (Z(@®), 1 2 0),

where —> denotes weak convergence in (D[0, 1], J7).

Remark 3.2. From the steps in the proof of Theorem 3.1 it is clear that similar results hold
if we impose a second order regular variation condition on Fgy, instead of assuming (3.1).
Proposition 3.1 will also follow in this case. Such a proof would, however, be more technical.

4. Gaussian approximations

In this section, we show that the number of exceedances

YA

33 g nx™)

m=1 i=1

satisfies the central limit theorem for certain thresholds x7 — ©00. The number of sources
M = M7t — oo is a nondecreasing integer-valued function. Together, M and xr have to
satisfy

xr <T and MT(Fon(xt) — Fon(T)) — o0. 4.1)

The latter is needed to have an increasing amount of exceedances (see (1.13)). Define

M
Zr = Z Z;m)
m=1

M gm
= Y [IMT (Fon(x7) = Fon (TN ™Y " (Apay. 11(X{™) = (Fon(xr) = Fon(T))).
m=1 i=1
Our goal is to show that Z7 has a Gaussian limit as 7 — oo. In doing so, we will use the

central limit theorem. Since each E;-m) is a stopping time, we have E Z7 = 0. Using (3.5) and
the fact that

var(lpy, 71(X1)) = (Fon(x1) — Fon(T))(1 — (Fon(x1) — Fon(T))) ~ Fon(x1) — Fon(T),

we obtain
ME(7) Var(l[xr,_T](Xl)) 1
MT(Fon(xT) — Fon(T)) .

(m)
T

var(Zr) =

Notice that, if we replaced each &’ by ur, Zr would actually be a centered and normalized
sum of M i.i.d. binomial random variables with [7 /] trials and success probability Fon(x7) —
Fon(T). Contrary to Sections 1-3, we do not need the assumption that Fyy is regularly varying.
In fact, it suffices to have

o0
= f (Fon(s) + Fofe(s)) ds < oo.
0

In this way, the existence of a stationary renewal sequence (S, ), defined by (1.2), is guaranteed.
In Section 4.1, we will show a central limit theorem for Zr, using the fact that E}m) are stopping
times.
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4.1. A central limit theorem

The following result shows that Z7 converges weakly to a normal distribution as T — oo.

Theorem 4.1. Suppose that 1 < co. If M and xr satisfy (4.1), thenas T — oo

M D
>z S N, .
m=1

Notice that there is no distinction between fast and slow growth of M.
The proof of Theorem 4.1 is given below. For ease of presentation, we introduce some
notation. Set

Xi=lpnX), A=EX, &*=var(X),
fs=EX-p)°  fs=BX-*
For a < b, write
Fon(a, b) = Fon(a) - Fon(b)-

Notice that
62 ~ i3 ~ jig ~ Fon(xr, T). 4.2)

Forn > 1, let

~ ~

So=0, S,=Xi+---+X,, and F,=0(D,X1,11,..., Xn, Yp).
Recall that &7 is a stopping time with respect to the filtration (¥7).

Proof of Theorem 4.1. We will derive Lyapunov’s condition (with § = 2) for the central
limit theorem, i.e. as T — oo

ME Z(l) 4
(—g)) ~ M E(ZP)* - 0.
[ME(Z;")?)?
‘We have -
E _ ~\4
ME(Z(TI))4 _ (Sgr — &T1) @3)

MT2[Fon(xt, T)I?

The approach is to calculate E(§gr — &rf1)* by first constructing a martingale and then using
the optional stopping theorem. It can be seen that

E[(S, — ni)* | Fr1]
= Snet — (1 — D@ + 662 (St — (n — D)2 + 4i23(Su—1 — (n — D) + fia.

Define
N

Ay = Y _[Sy —ni)* = BIS, —ni)* | Foall.

n=1
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By definition, Ay is a martingale with respect to the filtration (¥¥) and from the optional
stopping theorem (see [6, Theorem A2.4]) it follows that E A, = 0. This implies that

E(S, — &rin)*

§1 §r
= 6&2E[Z(§n_1 -~ 1);1)2] +4i13 E[Z('S'n_l - (- l)ﬂ)] + s Bér.

n=1 n=1

4.4
From (D.1) below, it follows that

ér - ér—1 - Er—1 5
E[}:(sn_l -(n- 1);2)] = E[}: Xi — (Er - i)] = E[Z X — /l)i]
i=1

n=1 i=1
fr - -
= E[Z(Xi - ﬁ)i] — Elér (Xg; — )] = —Elér(Xe; — ).
i=1

The final step follows from the fact that Z,’f:l(f i — [U)i is a martingale with respect to (F,)
and the optional stopping theorem.
Continuing the analysis, we write

&1
E[Z(En_l ~(n— 1);2)2]

n=1
&r n—-1 - &1 n—1 i—1 - -
= E[Z D Xi— ﬂ)z] +2E[Z YD Xi-w&; - ;1)]. @.5)
n=2 i=1 n=3 i=2 j=1
By (D.1), the first term equals
§r—1 fr -
E[ > (X — G - z')] = E[}:(X,- - ﬂ)zi] —Elér (Xer — i)%)
i=1 i=1
= TEET t Eér — El§r (Xer — 7] (4.6)
In the last step we used the fact that ZLI(Z — )% — %&Zn(n + 1) is a martingale with

respect to (¥,) and the optional stopping theorem.
By (D.2), the second term in (4.5) equals

ér—1 i—1
2E[Z Xi—Er -y (X, — ﬁ)]
i=2

j=1
5 -1 N §r-1
= zE[Z(Xi w7y X~ ﬁ)j] - 2E[<X;, -y (X~ ﬁ)j]
i=2 j=1 j=1
= _2E[(x;, -y (Xj - a)j] + 2BlEr (Xgr — )%, (4.7)

j=1
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In the final step we used the fact that ZLI()’E — [t Z’]_:ll X j — f)j is a martingale with
respect to (¥,) and the optional stopping theorem.
Combining (4.4)—(4.7) yields

E(Sg; — Erit)* = 36*B£7 + (35* + fia) Bér — 4ji3 Eler (Xey — 1))
ér
+ 662 Elér(Xe, — 1)°] — IZ&ZE[(Xgr - (X; - i) j],
j=1
We will now show that
EG — &7 = oMT  Fon (a1, ).

The proof of the Lyapunov condition then follows from (4.3).
By virtue of (3.4), (4.1) and (4.2) we obtain

36°E&2 + (36 + fia) BEr = o(MT? [Fon(x7, T)1?).
Furthermore,

|3 Elér (Xep — ]| < |3l Eér ~ p~ ' T Fon(xr, T) = o(MT [ Fon(x1, T)1?),
&2Eler (Xgy — )2 < 62Eér ~ ™' TFon(xr, T) = o(MT?*[Fon(x7, T)I?).

Finally,
N &
&° E[(X;T -y (X - m;]]
j=1
34 -
< &ZE[Z 1X; - fm]
j=1

§r §r
= &ZE[ZQXJ' ~ Qlj ~EIX ~ mj)] + &2E[Z j]E|X ~
Jj=1 j=1
< 262 E&7 Fon(xr, T) ~ 2u™>T*[Fon(xr, D))
= o(MT*[Fon (x1, T)1?).
In the third step, we again used the fact that £ is a stopping time. This completes the proof.

Appendix A. Convergence to a simple point process

Let M, (E) denote the space of all point measures defined on the state space E := [0, 00) x
(0, o0]. The space M, (E) is equipped with the vague topology (see [14, Section 3.4]). A point
process N on E is called simple if

P(N({x}) < 1 forallx € E) = 1,

that is, if there are no points coinciding, with probability 1. Notice that a Poisson random
measure N with mean measure v is simple if v is atomless.
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Let I be the class of rectangles [a, b) x (¢, d] C E and let A be the collection of sets
k
A=, Lier j=1,...kkx1
j=1

Observe that we may assume that the sets [a;, bj) X (c;, d;] are mutually disjoint. If two such
sets intersect, they are the union of at most three mutually disjoint sets of the form [a, b) x (c, d].
Notice that + is closed under finite unions and intersections.

It can be seen that for any compact K C E and open G C E with K C G, there exists
an A € A suchthat K C A C G. In [9] a class 4 with this property is called a separating
class. Evidently, finite unions of elements in I’ constitute a separating class. Any such class I
is called a preseparating class.

The following result is due to Kallenberg [9] and is an improved version of Theorem 4.7
of [8].

Theorem A.1. Suppose that N and Nr, T > O, are point processes on E and N is simple. If,
forall Ae Aandl € 1,

Tlim P(N7(A) =0) =P(N(A) =0) and limsupP(Ny(I) > 1) <P(N() > 1),
—>00

T—o00

then 5
Nr — N in M,(E).

Next we state a result on the convergence of a triangular array of point processes to a PRM.
Let Mt be a nondecreasing integer-valued function such that M7 — oo as T — oc. Let

N, m=1,...,Mp,T > 0)

be a triangular array of point processes on E, such that for each T the processes (N}'”), m=
1, ..., Mr) are mutually independent. The array is uniformly asymptotically negligible if

lim sup P(NVI(4)>0)=0,

T—00,=1,. My

for all sets A € «. Define the row sums
Mt
Nr=)Y NI,  T>o.
m=1

The following result can be found in [3, Theorem 9.2.V].

Theorem A.2. Let N be a simple PRM with mean measure v. If the triangular array (N}m))
is uniformly asymptotically negligible, then

Nr > N in My(E)
if and only if, for all sets A € A,

Mr Mt
: (m) _ : (m) _
Tlimoomz_l P(NyY(A) = 1) = v(A) and Tlimoomzﬂ P(NYV(A) >2) = 0.
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Appendix B. A property of regularly varying functions
Let U (x) be a regularly varying function with index p € R, i.e. forx > 0

im Ul(tx)
t—o00 U(t)

The following result can be found in [14, Proposition 0.8 (iii)].

= x”.

Proposition B.1. Let (a,) and (a)) be positive sequences, converging to infinity, such that
an ~ ayc, asn — oo, with 0 < ¢ < oo. Then
Ulan)

im =c”
n—oo U(a )

Appendix C. Replacement of the counting process &r by its mean

For 1 < a < 2, the following result was proved in [11, Lemma 4]. However, a close
inspection of the proof shows that the result holds for any o > 1.

Lemma C.1. Suppose that M satisfies the slow growth condition. Let e — 0 such that

1
b(MT) =o(erT) and ——(—T—) =o(eT). (C1)

Then, forany t > 0,
MP(r: — ure| > €rur:) — 0,

as T — oc.

Appendix D. An identity in law for stopped random sums
Here we use the notation introduced at the beginning of Section 4.1.

Lemma D.1. Let f : R — R be a measurable function. Then

ér—1 Er—1
Y fXoEr - =) fFXoi, (D.1)
i=1 i=1
and
gr-1 i-1 N er-1 -l
PIRCOICENI DI ICOED BN ICODINICHI (D2)

i=1 j=1 i=1 j=1
Proof. First we prove (D.1). We have

Er—1 o0 Er—1
pr = P(Z FXEr —i) > x) Z (Z FXGEr —i) > x, &r —n)

i=1 i=1
n—1

ZP(Zf(X,)(n—z)>x Sp_1 < T, S,,>T)

0 i=1

b

n—1

Z (Zf(xn Di>x, Suo1 < T, S,,>T)

n=0 i=1
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Notice that the probabilities above are invariant under a permutation on X, ..., X,—1. We
apply the permutation X; — X,,_;, i = 1,...,n — 1. This yields

o] n—1 n—1
pr = ZP(Z fE)i>x, D+ (Xoi+¥) <T,

n=0 i=1 i=1

n—1
D+ (Xn-i + Y1)+ (Xn +Yy) > T)

i=1

00 ér—1 - Er—1 N
= ZP(Z f(Xi)i > x, &7 =n) = P(Z f(X)i > x).

n=0 i=1 i=1

This completes the proof of (D.1). The proof of (D.2) is along the same lines and therefore
omitted.
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